Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 273: 127414, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37236065

RESUMO

Microbial community in natural or artificial environments playes critical roles in substance cycles, products synthesis and species evolution. Although microbial community structures have been revealed via culture-dependent and culture-independent approaches, the hidden forces driving the microbial community are rarely systematically discussed. As a mode of cell-to-cell communication that modifies microbial interactions, quorum sensing can regulate biofilm formation, public goods secretion, and antimicrobial substances synthesis, directly or indirectly influencing microbial community to adapt to the changing environment. Therefore, the current review focuses on microbial community in the different habitats from the quorum sensing perspective. Firstly, the definition and classification of quorum sensing were simply introduced. Subsequently, the relationships between quorum sensing and microbial interactions were deeply explored. The latest progressives regarding the applications of quorum sensing in wastewater treatment, human health, food fermentation, and synthetic biology were summarized in detail. Finally, the bottlenecks and outlooks of quorum sensing driving microbial community were adequately discussed. To our knowledge, this current review is the first to reveal the driving force of microbial community from the quorum sensing perspective. Hopefully, this review provides a theoretical basis for developing effective and convenient approaches to control the microbial community with quorum sensing approaches.


Assuntos
Anti-Infecciosos , Microbiota , Humanos , Percepção de Quorum/fisiologia , Bactérias/genética , Interações Microbianas , Anti-Infecciosos/farmacologia , Biofilmes
2.
Microbiol Res ; 262: 127102, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35792523

RESUMO

Substance and energy metabolism are the basis for all life activities and are largely regulated by cell-to-cell communication. Microbial cell-to-cell communication often occurs by releasing and receiving quorum sensing molecules (QSMs). QSMs are abundant and widely distributed in natural or artificial microbial communities, of which N-acyl homoserine lactones (AHLs), as a typical representative of QSMs, could strongly affect the physiological metabolism of microorganisms. Therefore, this review focuses on the role of AHL-mediated quorum sensing (AHL-QS) in the regulation of bacterial substance and energy metabolism. First, the typical molecular structures and general mechanism of the AHLs involved in this review were briefly introduced, and the findings regarding the regulatory mechanisms of AHLs in carbon metabolism (sugar uptake, Embden-Meyerhof-Parnas pathway, tricarboxylic acid cycle, hexose monophosphate pathway, amino acid and nucleotide metabolism and methane metabolism), nitrogen metabolism, sulfur metabolism and energy metabolism were discussed in detail. Finally, the regulation of AHL-QS in bacterial substance and energy metabolism was concluded, and the perspectives were highlighted. The progressive findings on the AHL-mediated QS involved in substance metabolism and energy metabolism are systematically and comprehensively summarized in this review. Thorough insight into the role of QS in metabolic processes is hopefully provided.


Assuntos
Acil-Butirolactonas , Percepção de Quorum , Acil-Butirolactonas/metabolismo , Bactérias/genética , Bactérias/metabolismo , Metabolismo Energético , Percepção de Quorum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA